\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^3(c+d x)}{\sqrt [3]{b \cos (c+d x)}} \, dx\) [163]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 92 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt [3]{b \cos (c+d x)}} \, dx=\frac {3 A b^2 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/3}}+\frac {3 (4 A+7 C) \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {1}{2},\frac {5}{6},\cos ^2(c+d x)\right ) \sin (c+d x)}{7 d \sqrt [3]{b \cos (c+d x)} \sqrt {\sin ^2(c+d x)}} \]

[Out]

3/7*A*b^2*sin(d*x+c)/d/(b*cos(d*x+c))^(7/3)+3/7*(4*A+7*C)*hypergeom([-1/6, 1/2],[5/6],cos(d*x+c)^2)*sin(d*x+c)
/d/(b*cos(d*x+c))^(1/3)/(sin(d*x+c)^2)^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {16, 3091, 2722} \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt [3]{b \cos (c+d x)}} \, dx=\frac {3 A b^2 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/3}}+\frac {3 (4 A+7 C) \sin (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {1}{2},\frac {5}{6},\cos ^2(c+d x)\right )}{7 d \sqrt {\sin ^2(c+d x)} \sqrt [3]{b \cos (c+d x)}} \]

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(b*Cos[c + d*x])^(1/3),x]

[Out]

(3*A*b^2*Sin[c + d*x])/(7*d*(b*Cos[c + d*x])^(7/3)) + (3*(4*A + 7*C)*Hypergeometric2F1[-1/6, 1/2, 5/6, Cos[c +
 d*x]^2]*Sin[c + d*x])/(7*d*(b*Cos[c + d*x])^(1/3)*Sqrt[Sin[c + d*x]^2])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3091

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[A*Cos[e +
 f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = b^3 \int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{10/3}} \, dx \\ & = \frac {3 A b^2 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/3}}+\frac {1}{7} (b (4 A+7 C)) \int \frac {1}{(b \cos (c+d x))^{4/3}} \, dx \\ & = \frac {3 A b^2 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/3}}+\frac {3 (4 A+7 C) \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {1}{2},\frac {5}{6},\cos ^2(c+d x)\right ) \sin (c+d x)}{7 d \sqrt [3]{b \cos (c+d x)} \sqrt {\sin ^2(c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.99 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt [3]{b \cos (c+d x)}} \, dx=\frac {3 \left (7 C \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {1}{2},\frac {5}{6},\cos ^2(c+d x)\right ) \sin (c+d x)+A \operatorname {Hypergeometric2F1}\left (-\frac {7}{6},\frac {1}{2},-\frac {1}{6},\cos ^2(c+d x)\right ) \sec (c+d x) \tan (c+d x)\right )}{7 d \sqrt [3]{b \cos (c+d x)} \sqrt {\sin ^2(c+d x)}} \]

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(b*Cos[c + d*x])^(1/3),x]

[Out]

(3*(7*C*Hypergeometric2F1[-1/6, 1/2, 5/6, Cos[c + d*x]^2]*Sin[c + d*x] + A*Hypergeometric2F1[-7/6, 1/2, -1/6,
Cos[c + d*x]^2]*Sec[c + d*x]*Tan[c + d*x]))/(7*d*(b*Cos[c + d*x])^(1/3)*Sqrt[Sin[c + d*x]^2])

Maple [F]

\[\int \frac {\left (A +C \left (\cos ^{2}\left (d x +c \right )\right )\right ) \left (\sec ^{3}\left (d x +c \right )\right )}{\left (\cos \left (d x +c \right ) b \right )^{\frac {1}{3}}}d x\]

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(cos(d*x+c)*b)^(1/3),x)

[Out]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(cos(d*x+c)*b)^(1/3),x)

Fricas [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt [3]{b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{3}}{\left (b \cos \left (d x + c\right )\right )^{\frac {1}{3}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(b*cos(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c))^(2/3)*sec(d*x + c)^3/(b*cos(d*x + c)), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt [3]{b \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**3/(b*cos(d*x+c))**(1/3),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt [3]{b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{3}}{\left (b \cos \left (d x + c\right )\right )^{\frac {1}{3}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(b*cos(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^3/(b*cos(d*x + c))^(1/3), x)

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt [3]{b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{3}}{\left (b \cos \left (d x + c\right )\right )^{\frac {1}{3}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(b*cos(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^3/(b*cos(d*x + c))^(1/3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt [3]{b \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^3\,{\left (b\,\cos \left (c+d\,x\right )\right )}^{1/3}} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^3*(b*cos(c + d*x))^(1/3)),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^3*(b*cos(c + d*x))^(1/3)), x)